Ehrhart Series of Polytopes Related to Symmetric Doubly-Stochastic Matrices
نویسندگان
چکیده
منابع مشابه
Ehrhart Series of Polytopes Related to Symmetric Doubly-Stochastic Matrices
In Ehrhart theory, the h∗-vector of a rational polytope often provides insights into properties of the polytope that may be otherwise obscured. As an example, the Birkhoff polytope, also known as the polytope of real doubly-stochastic matrices, has a unimodal h∗-vector, but when even small modifications are made to the polytope, the same property can be very difficult to prove. In this paper, w...
متن کاملAn Ehrhart Series Formula For Reflexive Polytopes
It is well known that for P and Q lattice polytopes, the Ehrhart polynomial of P×Q satisfies LP×Q(t) = LP (t)LQ(t). We show that there is a similar multiplicative relationship between the Ehrhart series for P , for Q, and for the free sum P ⊕ Q that holds when P is reflexive and Q contains 0 in its interior. Let P be a lattice polytope of dimension d, i.e. a convex polytope in R whose vertices ...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملDoubly stochastic matrices of trees
In this paper, we obtain sharp upper and lower bounds for the smallest entries of doubly stochastic matrices of trees and characterize all extreme graphs which attain the bounds. We also present a counterexample to Merris’ conjecture on relations between the smallest entry of the doubly stochastic matrix and the algebraic connectivity of a graph in [R. Merris, Doubly stochastic graph matrices I...
متن کاملRandom doubly stochastic tridiagonal matrices
Let Tn be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly at random in the set Tn. A simple algorithm is presented to allow direct sampling from the uniform distribution on Tn. Using this algorithm, the elements abo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2015
ISSN: 1077-8926
DOI: 10.37236/4692